一、题目👨🏻🦲:股票收益的机器学习实时预测:来自基本面信号的证据(Real-time Machine Learning for the Cross-Section of Stock Returns: Evidence From Fundamental Signals)
二🫒、主讲人:李斌🚵🏿,武汉大学经济与管理K8凯发教授
李斌,武汉大学经济与管理K8凯发教授、博士生导师,担任金融系支部书记🧑🏽💻、代理主任🐹,兼任金融科技研究中心主任🚵🏽。研究方向为金融科技、投资管理和机器学习等💱🦸♀️。他具备金融+科技的跨学科背景与研究能力🙎♀️,在《Journal of Accounting Research》、《Artificial Intelligence》🤷🏿♀️🔖、《Journal of Machine Learning Research》、《管理科学学报》、《中国工业经济》、ICML😯🧛🏻♀️、IJCAI等金融会计和人工智能类期刊会议上发表论文🤘🏿,出版英文专著一部⚪️。主持国家自然科学基金等项目,已结题自科基金青年项目后评估为特优。研究被海通证券等转载应用🦶🏼,获评中国金融学年会优秀论文二等奖等🪲。
三、时间: 2022年4月6日星期三 上午10:00-11:30
四🧛🏼♀️、地点🈚️:腾讯会议 668-584-402
五、主持人🙎🏼♀️:姜富伟教授,金融工程系主任
六♖、内容简介:
Recent studies document strong performance of machine learning based investment strategies. These strategies use anomaly variables discovered ex-post as predictors of stock returns and cannot be implemented in real time. We construct machine learning strategies from a “universe” of fundamental signals identified ex-ante and find that their out-of-sample performance is considerably weaker than those documented by previous studies. In addition, we find significant degradation from in-sample performance to out-of-sample performance, supporting the predictions of Martin and Nagel (2021). Overall, our results offer a more tempered view of the practical value of machine learning strategies relative to prior literature.